
Extensions to Allocatables
and Pointers

Hamid Oloso & Tom Clune
SIVO Fortran 2003 Series

February 26th 2008

2/18/08 Extensions to Allocatables and Pointers 2

Logistics
 Materials for this series can be found at

http://modelingguru.nasa.gov/clearspace/docs/DOC-1375
 Contains slides and source code examples.
 Latest materials may only be ready at-the-last-minute.

 Please be courteous:
 Remote attendees should use “*6” to toggle the mute. This

will minimize background noise for other attendees.
 Webex - under investigation

2/18/08 Extensions to Allocatables and Pointers 3

Outline
 Introduction
 Standardized extensions to Fortran 95

 Allocatable Dummy Arguments
 Allocatable Function Results
 Allocatable Components

 Allocatable entities
 Allocatable Scalars
 Assignment to an Allocatable Array
 Transferring an Allocation

 Introduction to Typed and Sourced (Cloning) Allocation
 Pointer Assignment
 Procedure Pointers - deferred till OO
 Resources

2/18/08 Extensions to Allocatables and Pointers 4

Introduction
 Started as a standardized extension to Fortran 95 in Tech Report

<Reference here> but now part of Fortran 2003:
 Allocatable dummy arguments
 Allocatable functions
 Allocatable components
 Pointers could be used but…..

 Performance: cannot guarantee contiguous memory storage (stride 1)
 Performance: aliasing (multiple refs to same entity) prevents some

optimizations
 Safety: can lead to subtle memory leaks and/or dangling pointers

 Additional extensions in Fortran 2003 proper:
 Allocatable scalars
 Assignment to an allocatable array
 Transferring an allocation
 Typed and Sourced (Cloning) Allocation - only brief intro here, more later

under OO
 Pointer assignment

2/18/08 Extensions to Allocatables and Pointers 5

Subroutine load(array, unit)
 real, allocatable, intent(out),

dimension(:,:,:) :: array
 integer, intent(in) :: unit
 integer :: n1, n2, n3
 read(unit) n1, n2, n3
 allocate(array(n1, n2, n3))
 read(unit) array
End subroutine load

Allocatable Dummy Arguments
 Dummy argument can have ALLOCATABLE attribute
 Corresponding actual argument must have same TKR and be ALLOCATABLE
 Allocation status

 Dummy argument receives status of actual argument on entry
 Actual argument receives status of dummy argument on return
 Either way, status may be “not currently allocated”

 No reference to the associated actual argument is permitted via another alias if the
dummy argument is allocated, deallocated, defined, or becomes undefined.

 “intent” permitted both for allocation status and array itself
 intent(in) ⇒ array can not be allocated/deallocated and value can not be altered
 Intent(out) ⇒ array allocated on entry becomes deallocated
 Intent(inout) => array receives status from caller and sends status back to caller

 Example: Reading arrays of variable bounds

2/18/08 Extensions to Allocatables and Pointers 6

Allocatable Function Results
 Return value of a function can be allocatable, e.g.

FUNCTION af() RESULT(res)
 REAL, ALLOCATABLE :: res

 Allocation status of result on entry to function is “not currently
allocated”

 Result may be allocated/deallocated any number of times during
function execution

 Result must be allocated and have defined value on return from
function

 Result is automatically deallocated after it has been used
 Important property which prevents memory leaks!

2/18/08 Extensions to Allocatables and Pointers 7

Allocatable Function Results
 Example:

! The result of this function is the original argument with adjacent
! duplicate entries deleted (so if it was sorted, each element is unique).
FUNCTION compress(array)
 INTEGER, ALLOCATABLE :: compress(:)
 INTEGER, INTENT(IN) :: array(:)
 IF (SIZE(array,1)==0) THEN
 ALLOCATE(compress(0))
 ELSE
 N = 1
 DO I=2,SIZE(array,1)
 IF (array(I)/=array(I-1)) N = N + 1
 END DO
 ALLOCATE(compress(N))
 N = 1
 compress(1) = array(1)
 DO I=2,SIZE(array,1)
 IF (array(I)/=compress(N)) THEN
 N = N + 1
 compress(N) = array(I)
 END IF
 END DO
 END IF
END

2/18/08 Extensions to Allocatables and Pointers 8

Allocatable components
 A structure component can be declared ALLOCATABLE:

 TYPE t
 REAL, ALLOCATABLE :: c(:,:)
 END TYPE

 SUBROUTINE s()
 TYPE(t) x
 TYPE(t), SAVE :: y
 ...
 END SUBROUTINE

 As with variables, initially unallocated
 x%c is unallocated upon each entry to subroutine s()
 y%c is unallocated at the beginning of the program.

 As with variables, automatically deallocated (unless SAVEd)
 x%c is deallocated on return from subroutine s()
 y%c retains its allocation status.

2/18/08 Extensions to Allocatables and Pointers 9

Allocatable components
 Unlike variables, sensible assignment ("deep copy'')
 The assignment statement

 x = y
acts like

IF (ALLOCATED(x%c)) DEALLOCATE(x%c)
IF (ALLOCATED(y%c)) THEN

ALLOCATE(x%c(lbound(y%c,1):ubound(y%c,1), &
lbound(y%c,2):ubound(y%c,2)))

x%c = y%c
END IF

 This is recursively applied for nested allocatable components.
 Rationale: Otherwise the bookkeeping would be prohibitive.

2/18/08 Extensions to Allocatables and Pointers 10

Allocatable components
 Example

MODULE matrix_module
 TYPE real_matrix
 REAL,ALLOCATABLE :: value(:,:)
 END TYPE
 INTERFACE OPERATOR(*)
 MODULE PROCEDURE multiply_mm
 END INTERFACE
 ...
CONTAINS
 TYPE(real_matrix) FUNCTION multiply_mm(a,b) RESULT(c)
 TYPE(real_matrix),INTENT(IN) :: a,b
 ALLOCATE(c%value(size(a%value,1),size(b%value,2)))
 c%value = matmul(a%value,b%value)
 END FUNCTION
END

PROGRAM example
 USE matrix_module
 TYPE(real_matrix) :: x,y,z
 ...
 x = y*z
 ...
END

 Superior to version based upon pointers:
 More efficient
 No memory leak
 Easier to write (e.g. assignment does the "right thing").

2/18/08 Extensions to Allocatables and Pointers 11

Allocatable scalars
 ALLOCATABLE attribute is now permitted for scalar variables/components

 Particularly useful when combined with deferred type parameters

CHARACTER(:), ALLOCATABLE :: chdata
INTEGER :: unit, reclen
.
.
.
READ(unit) reclen
ALLOCATE(character(reclen) :: chdata)
READ(unit) chdata

 Automatically deallocated after use - prevents memory leaks

2/18/08 Extensions to Allocatables and Pointers 12

Assignment to allocatable arrays
 Fortran 95: an allocate variable must first be allocated in a separate statement

before values are assigned to it in another statement
 Fotran 2003: allocation is automatic based on assignment
 Automatic allocation/reallocation for deferred type parameters as well
 Example:

.

.
 n = size(F(A))
 if (allocated(B)) then
 if (size(B) /= n) then
 deallocate(B)
 allocate(B(n))
 endif
 else
 allocate(B)
 end if
 B = F(A)

..
B = F(A)

Fortran 95 Fortran 2003

2/18/08 Extensions to Allocatables and Pointers 13

Transferring an allocation
 Use intrinsic subroutine move_alloc()

call move_alloc(from, to)

 from is allocatable and has intent inout
 to is allocatable of same type and rank as from
 After the call:

 Original allocation of to is deallocated
 New allocation status of to is that of from
 from becomes deallocated

 Example:

real, allocatable :: a1(:), a2(:)
allocate (a1(0:10))
a1(3) =37
call move_alloc(from=a1, to=a2)
! a1 is now unallocated
! a2 is allocated with bounds (0:10) and a2(3) = 37.

2/18/08 Extensions to Allocatables and Pointers 14

Introduction to Typed and Sourced
(Cloning) allocation
 The allocate statement can now determine:

 Type parameter values (Type & Value)
 Controlled by either type specification in the allocate statement or by the

use of source= clause
 Syntax of the allocate statement is thus extended to:

allocate([type-spec ::] allocation-list [,source=source-expr], [stat=stat])
 type-spec is the type name followed by the type parameter values in parentheses
 source-expr is any expression that is type-compatible
 An allocate statement with a type-spec is typed allocation
 An allocate statement with source= is a sourced allocation
 Only one of type-spec or source= clauses is allowed in an allocate statement

 Examples
 typed allocation

 TYPE(matrix(KIND(0.0D0),m =:,n =:), ALLOCATABLE :: b,c
 ALLOCATE(TYPE(matrix(KIND(0.0D0),m = 10,n = 20)):: b,c)

 sourced allocation
TYPE(matrix(KIND(0.0D0),m = 10,n = 20):: a
TYPE(matrix(KIND(0.0D0),m =:,n =:), ALLOCATABLE :: b
ALLOCATE(b,SOURCE=a)

2/18/08 Extensions to Allocatables and Pointers 15

Pointer assignment
 INTENT: Controls changes to association status (not definition status).

SUBROUTINE pex(p1,p2,p3)
 .., POINTER, INTENT(IN) :: p1
 .., POINTER, INTENT(INOUT) :: p2
 .., POINTER, INTENT(OUT) :: p3
 ...
 p1 = 2 ! ok
 p1 => p2 ! not permitted
 p2 => p3 ! Permitted, but not safe
 END

 Notes:

 p1 cannot have its association status altered during execution of pex(), except
that it may become undefined if its target is deallocated (through some other
pointer).

 p2 and p3 must be associated with pointer variables, not pointer function
references.

 p3 has undefined association status on entry to pex().

2/18/08 Extensions to Allocatables and Pointers 16

Pointer assignment

 Lower Bounds: May be specified on pointer assignment.
REAL,POINTER :: a(:),b(:),c(:)
 ...
 ALLOCATE(a(-10:10)) ! Lower bound of A is -10
 b => a ! Lower bound of B is -10
 c => a(-5:5) ! Lower bound of C is 1
 c(-5:) => a(-5:5) ! Lower bound of C is -5

 The upper bounds are derived from the specified lower
bounds and the extent.

2/18/08 Extensions to Allocatables and Pointers 17

Pointer assignment

 Rank Remapping: Change rank in pointer assignment.
 Motivation: allow different “views” to same region of memory

 Use natural indexing for each algorithm
 E.g. pointer to diagonal
 REAL,ALLOCATABLE,TARGET :: base_array(:)
 REAL,POINTER :: matrix(:,:)
 REAL,POINTER :: diagonal(:)
 ...
 ALLOCATE(base_array(n*n))
 matrix(1:n,1:n) => base_array ! rank remapping
 diagonal => base_array(::n+1)

 Notes:
 The base array must be rank one, to ensure that the remapping

is a simple linear transformation.
 Both lower bound and upper bound must be specified for each

dimension.

2/18/08 Extensions to Allocatables and Pointers 18

Pitfalls and Best Practices
 Best Practices

 Use allocatables where appropriate instead of pointers
 Efficiency
 Convenience
 Avoidance of memory leak - Fortran 2003 extensions

automatically deallocate

2/18/08 Extensions to Allocatables and Pointers 19

Supported Features

nononoyesnoyesyesTransfering an Allocation

nononoyesnoyesnoPointer Lower Bound

no

no

no

no

yes

no

Gfortran
20070810

no

no

no

yes

yes

yes

Ifort
9.1.049

nonoyesyesyesPointer Rank

nonononoyesAssignment to an Allocatable Array

nonoyesnonoAllocatable Scalars

yesyesyesyesyesAllocatable Components

noyesyesyesyesAllocatable Function Results

noyesyesyesyesAllocatable Dummy Arguments

G95
0.90

pgi
6.2.4

Xlf
11.0

NAG
5.1

Ifort
10.0.025

Feel free to contribute if you have
access to other compilers not
mentioned!

Compiler

2/18/08 Extensions to Allocatables and Pointers 20

Resources
 SIVO Fortran 2003 series:

 https://modelingguru.nasa.gov/clearspace/docs/DOC-1390
 Questions to Modeling Guru: https://modelingguru.nasa.gov
 SIVO code examples on Modeling Guru
 Fortran 2003 standard:

http://www.open-std.org/jtc1/sc22/open/n3661.pdf
 John Reid summary:

 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.pdf
 ftp://ftp.nag.co.uk/sc22wg5/N1551-N1600/N1579.ps.gz

 Newsgroups
 http://groups.google.com/group/comp.lang.fortran

 Real world examples
 Fortran 2003 Interface to OpenGL:

http://www-stone.ch.cam.ac.uk/pub/f03gl/
 Fotran 2003 version of NETCDF:

ftp://ftp.unidata.ucar.edu/pub/netcdf/contrib/netcdf-3.6.1-f03-2.tgz
 FGSL: A Fortran interface to the GNU Scientific Library

http://www.lrz-muenchen.de/services/software/mathematik/gsl/fortran/index.html

2/18/08 Extensions to Allocatables and Pointers 21

Next Fortran 2003 Session
 I/O extensions
 Tom Clune will present
 Tuesday, March 11 2008
 B28-E210

